1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
| <template> <div> <Transition> <div class="loading" v-if="loading"> <div class="content"> <div class="box"> <div class="process" :style="{ width: `${process}%` }"></div> </div> <p>{{ `${process}%` }} Loading......</p> </div> </div> </Transition> <div id="canvas" ref="canvas"></div> </div> </template>
<script lang="ts" setup> import * as THREE from "three" import { OrbitControls } from "three/examples/jsm/controls/OrbitControls" import { EffectComposer } from "three/examples/jsm/postprocessing/EffectComposer" import { RenderPass } from 'three/examples/jsm/postprocessing/RenderPass' import { OutlinePass } from 'three/examples/jsm/postprocessing/OutlinePass' import { OBJLoader } from 'three/examples/jsm/loaders/OBJLoader' import { MTLLoader } from 'three/examples/jsm/loaders/MTLLoader' import Stats from "stats.js" import gsap from "gsap"; import { nextTick, ref } from "vue" import { getAssetsFile } from "../utils"
const canvas = ref<any>(null); // 画布 let scene: THREE.Scene; // 场景 let camera: THREE.PerspectiveCamera; // 相机 let renderer: THREE.WebGLRenderer; // 渲染器 let controls: any; // 控制器 let stats: any; // 性能监测器 let stars: THREE.Points; // 星空 const earthGroup: THREE.Group = new THREE.Group(); // 地球和大气层组合 let torus: THREE.Mesh; // 星轨圆环 let satellite: THREE.Group; // 卫星 const meshGroup: THREE.Group = new THREE.Group(); // 场景内除星空、灯光外所有内容的组合 const starCount: number = 10000; // 星星数量 const manager = new THREE.LoadingManager(); // 加载器管理器 const textureLoader: THREE.TextureLoader = new THREE.TextureLoader(manager); // 纹理加载器 const objLoader: OBJLoader = new OBJLoader(manager) // OBJ模型加载器 const mTLLoader: MTLLoader = new MTLLoader(manager) // MTL资源加载器 const process = ref<number>(0); // 加载进度 const loading = ref<boolean>(true); // 加载中 let composer: EffectComposer; // 效果合成器 let curve: THREE.CatmullRomCurve3; // 三维曲线 let progress = 0; // 运动路径初始位置 const velocity = 0.001 // 速度 const wareArr: THREE.Mesh[] = [] const lnglatData = [ { lnglat: [[116.40, 39.91], [109.51, 18.25]], color: 'rgb(192, 44, 56)' }, { lnglat: [[116.40, 39.91], [169.14, 67.74]], color: 'rgb(129, 60, 133)' }, { lnglat: [[116.40, 39.91], [22.90, 51.23]], color: 'rgb(32, 161, 98)' }, { lnglat: [[116.40, 39.91], [35.75, -6.17]], color: 'rgb(255, 20, 147)' }, { lnglat: [[116.40, 39.91], [-56.89, -14.54]], color: 'rgb(255, 153, 0)' }, { lnglat: [[116.40, 39.91], [58.48, 40.74]], color: 'rgb(0, 255, 255)' }, { lnglat: [[116.40, 39.91], [76.77, 12.93]], color: 'rgb(75, 0, 130)' } ] const flyLineArr: THREE.Line[] = []
manager.onProgress = function(item, loaded, total) { let value = loaded / total * 100 process.value = Math.ceil(value)
if(value === 100) { setTimeout(() => { loading.value = false
gsap.to(meshGroup.position, { z: 0, ease: "Power2.inOut", duration: 1, }) gsap.to(earthGroup.rotation, { y: 10, ease: "Power2.inOut", duration: 2, onComplete() { if(flyLineArr.length === 0) { drawPointOnEarth(); } } }) }, 1000) } };
nextTick(() => { initScene(); initCamera(canvas.value.clientWidth, canvas.value.clientHeight); initRenderer(canvas.value.clientWidth, canvas.value.clientHeight); initControls(); render(); initStats(); // initAxesHelper(); initLight(); createStar(); createEarth(); createStarOrbit(); createMoveTrack(); createSatellite();
meshGroup.position.set(0, 0, -100) scene.add(meshGroup) });
const initScene = (): void => { scene = new THREE.Scene(); scene.background = new THREE.Color( 0x020924 ); scene.fog = new THREE.Fog( 0x020924, 200, 1000 ); }
const initCamera = (width: number, height: number): void => { camera = new THREE.PerspectiveCamera(75, width / height, 1, 1000); camera.position.set(0, 0, 14); scene.add(camera); };
const initRenderer = (width: number, height: number): void => { renderer = new THREE.WebGLRenderer({ antialias: true, // 抗锯齿 }); renderer.setSize(width, height); canvas.value.appendChild(renderer.domElement); renderer.render(scene, camera); };
const initStats = (): void => { stats = new Stats(); canvas.value.appendChild(stats.dom); };
const initAxesHelper = (): void => { const axesHelper: THREE.AxesHelper = new THREE.AxesHelper(50); scene.add(axesHelper); };
const initControls = (): void => { controls = new OrbitControls(camera, renderer.domElement); // 使动画循环使用时阻尼或自转 意思是否有惯性 controls.enableDamping = true; //是否可以缩放 controls.enableZoom = true; //是否自动旋转 controls.autoRotate = false; //是否开启右键拖拽 controls.enablePan = true; //摄像机缩放的速度 controls.zoomSpeed = 1.8; };
const initLight = (): void => { const ambientLight: THREE.AmbientLight = new THREE.AmbientLight( new THREE.Color('rgb(222, 237, 255)')); scene.add(ambientLight); };
const createStar = (): void => { let geometry: THREE.BufferGeometry = new THREE.BufferGeometry(); // 顶点集合 let vertices: Float32Array = new Float32Array(starCount * 3); // 随机颜色集合 let colors: Float32Array = new Float32Array(starCount * 3);
for (let i = 0; i < starCount; i++) { // -500 ~ 500之间随机数 let x = (Math.random() - 0.5) * 1000; let y = (Math.random() - 0.5) * 1000; let z = (Math.random() - 0.5) * 1000;
vertices[i * 3 + 0] = x; vertices[i * 3 + 1] = y; vertices[i * 3 + 2] = z;
// 随机颜色 let color: THREE.Color = new THREE.Color(); // setHSL(‘色调', '亮度', ‘饱和‘) 三个参数皆在[0, 1]之间 color.setHSL(Math.random() * 0.2 + 0.5, 0.55, Math.random() * 0.25 + 0.55); colors[i * 3 + 0] = color.r; colors[i * 3 + 1] = color.g; colors[i * 3 + 2] = color.b; }
geometry.setAttribute("position", new THREE.BufferAttribute(vertices, 3)); geometry.setAttribute("color", new THREE.BufferAttribute(colors, 3));
let starTexture: THREE.Texture = textureLoader.load(getAssetsFile("star.png")); let starMaterial = new THREE.PointsMaterial({ map: starTexture, size: 1, // 点大小 transparent: true, // 材质透明 opacity: 1, // 透明度 vertexColors: true, // 顶点着色 depthTest: true, // 是否在渲染此材质时启用深度测试 depthWrite: false, // 渲染此材质是否对深度缓冲区有任何影响 blending: THREE.AdditiveBlending, // 材质混合 sizeAttenuation: true, // 点的大小是否因相机深度而衰减 }); stars = new THREE.Points(geometry, starMaterial);
scene.add(stars); };
const createEarth = () => { // 地球 // 创建球形几何体 const earthGeo: THREE.SphereGeometry = new THREE.SphereGeometry(5, 32, 32); // 贴图加载 const earthTexture: THREE.Texture = textureLoader.load(getAssetsFile("earth/earth.png")); const earthBumpTexture: THREE.Texture = textureLoader.load(getAssetsFile("earth/earth_bump.png")); const earthSpecTexture: THREE.Texture = textureLoader.load(getAssetsFile("earth/earth_spec.png")); // 高光材质 const earthMaterial: THREE.MeshPhongMaterial = new THREE.MeshPhongMaterial({ map: earthTexture, // 贴图 bumpMap: earthBumpTexture, // 凹凸贴图纹理 bumpScale: 0.15, // 凹凸贴图会对材质产生多大影响 0~1 specularMap: earthSpecTexture, // 镜面反射贴图 specular: new THREE.Color("#909090"), // 材质的高光颜色 shininess: 5, // 高亮的程度,越高越亮 transparent: true, // 材质透明 side: THREE.DoubleSide // 定义将要渲染哪一面,THREE.DoubleSide是两面 }); const earth: THREE.Mesh = new THREE.Mesh(earthGeo, earthMaterial) earthGroup.add(earth)
// 大气层 const cloudGeo: THREE.SphereGeometry = new THREE.SphereGeometry(5.1, 40, 40) const cloudTexture: THREE.Texture = textureLoader.load(getAssetsFile("earth/earth_cloud.png")); const cloudMaterial: THREE.MeshPhongMaterial = new THREE.MeshPhongMaterial({ map: cloudTexture, transparent: true, opacity: 1, blending: THREE.AdditiveBlending, side: THREE.DoubleSide }) const cloud: THREE.Mesh = new THREE.Mesh(cloudGeo, cloudMaterial) earthGroup.add(cloud)
// 设置地球组转向 earthGroup.rotation.set( 0.5, 0, -0.4 );
meshGroup.add(earthGroup) scene.add(meshGroup) };
const createStarOrbit = (): void => { // 创建环形几何体 const torusGeo: THREE.TorusGeometry = new THREE.TorusGeometry(8.0, 0.2, 2, 200) const torusMaterial: THREE.MeshBasicMaterial = new THREE.MeshBasicMaterial({ color: new THREE.Color("rgb(147, 181, 207)"), transparent: true, opacity: 0.4 }); torus = new THREE.Mesh(torusGeo, torusMaterial); torus.rotation.set( 1.7, 0.5, 1 ); torus.updateMatrix();
// 效果合成器,是Three.js中的一个后期处理效果库。EffectComposer允许您将多个RenderPass组合在一起,以创建复杂的后期处理效果 composer = new EffectComposer( renderer )
// 通用的渲染器通道,用于将场景渲染到纹理或屏幕上 const renderPass: RenderPass = new RenderPass( scene, camera ); composer.addPass( renderPass );
// 后期处理通道,可以在场景中的对象周围创建一个轮廓线 const outlinePass: OutlinePass = new OutlinePass( new THREE.Vector2( canvas.value.clientWidth, canvas.value.clientHeight ), scene, camera ); composer.addPass( outlinePass );
outlinePass.pulsePeriod = 0; // 数值越大,律动越慢 outlinePass.visibleEdgeColor.set( new THREE.Color("rgb(147, 181, 207)") ); // 高光颜色 outlinePass.usePatternTexture = false; // 使用纹理覆盖 outlinePass.edgeStrength = 2; // 高光边缘强度 outlinePass.edgeGlow = 1; // 边缘微光强度 outlinePass.edgeThickness = 1; // 高光厚度 outlinePass.selectedObjects = [torus]; // 需要后期的Mesh
meshGroup.add(torus) }
const createMoveTrack = (): void => { // number 轨迹环总长度 radius 轨迹环半径 centerPoint 圆心 pointsArr 向量组合 const length: number = 300, radius: number = 9, centerPoint = { x: 0, y: 0, z: 0 }, pointsArr: THREE.Vector3[] = [];
// 通过三角函数计算圆上点坐标 // 根据三角函数正弦、余弦求得,假设圆心**P(0, 0, 0)**,半径**r(9)**,一共**length300**个点,循环长度的到坐标位置**i** // x = r * Math.sin(Math.PI * 2 * i / length) + p.x // y = r * Math.cos(Math.PI * 2 * i / length) + p.y for (let i = 0; i <= length; i++) { pointsArr.push( new THREE.Vector3( radius * Math.sin(Math.PI * 2 * i / length) + centerPoint.x, radius * Math.cos(Math.PI * 2 * i / length) + centerPoint.y, centerPoint.z ) ) } // 3阶段贝塞尔曲线 curve = new THREE.CatmullRomCurve3(pointsArr, true, 'catmullrom', 0.5); // 分成50个点 const points: THREE.Vector3[] = curve.getPoints(50); // 建立轨迹线并设置完全透明隐藏起来 const lineGeo: THREE.BufferGeometry = new THREE.BufferGeometry().setFromPoints(points); const lineMaterial: THREE.LineBasicMaterial = new THREE.LineBasicMaterial({ transparent: true, opacity: 0 }) const line = new THREE.Line(lineGeo, lineMaterial) // 设置跟星轨一样的转向,这样到卫星看起来就会在轨迹环边运动 line.rotation.set( 1.7, 0.5, 1 );
// 物体旋转移动后顶点不更新 // 创建一个四维矩阵 // 然后将torus.rotation创建一个旋转矩阵并赋值给matrix // 最后将旋转矩阵应用于curve的顶点 // 通过applyMatrix4(matrix)方法,curve.points[i]对象的坐标会根据旋转矩阵matrix进行变换,从而实现旋转效果 const matrix = new THREE.Matrix4(); matrix.makeRotationFromEuler(torus.rotation); for (let i = 0; i < curve.points.length; i++) { curve.points[i].applyMatrix4(matrix); }
meshGroup.add(line) }
const createSatellite = (): void => { mTLLoader.load(getAssetsFile('satellite/Satellite.mtl'), (material) => { // 预加载材质所需的所有纹理、贴图 material.preload()
objLoader.setMaterials(material).load(getAssetsFile('satellite/Satellite.obj'), (obj) => { // 将轨迹路线的第一个坐标设置成卫星的初始位置 obj.position.copy(curve.points[0]) satellite = obj meshGroup.add(satellite) }) }) }
const lglnToxyz = (lg: number, lt: number, radius: number): THREE.Vector3 => { // theta是俯仰面(竖直面)内的角度,范围0~180度 const theta = (90 + lg) * (Math.PI / 180) // phi是方位面(水平面)内的角度,范围0~360度 const phi = (90 - lt) * (Math.PI / 180) // 球坐标 const spherical = new THREE.Spherical(radius, phi, theta) // 三维向量 const xyz = new THREE.Vector3() // 从球坐标中设置该向量 xyz.setFromSpherical(spherical)
return xyz }
const createEarthPoint = (localton: THREE.Vector3, color: string): THREE.Group => { // 新建一个标点组合 const pointGroup: THREE.Group = new THREE.Group();
// 涟漪圈圈 const waveGeo: THREE.PlaneGeometry = new THREE.PlaneGeometry( 0.3, 0.3 ); const waveTexture: THREE.Texture = textureLoader.load(getAssetsFile("wave.png")); const waveMaterial: THREE.MeshBasicMaterial = new THREE.MeshBasicMaterial({ map: waveTexture, color: color, transparent: true, opacity: 1.0, side: THREE.DoubleSide, depthWrite: false, }) let waveMesh: THREE.Mesh = new THREE.Mesh(waveGeo, waveMaterial); // 设置后期控制涟漪动画的大小和透明度阀值 (waveMesh as any).size = 5.1 * 0.3; (waveMesh as any)._s = Math.random() * 1.0 + 1.0;
wareArr.push(waveMesh)
// 标点光柱 // 使用CylinderGeometry创建一个圆锥形圆柱体 const lightGeo: THREE.CylinderGeometry = new THREE.CylinderGeometry(0, 0.05, 0.5, 32) const lightTexture: THREE.Texture = textureLoader.load(getAssetsFile("lightray.png")) const lightMaterial: THREE.MeshBasicMaterial = new THREE.MeshBasicMaterial({ map: lightTexture, color: color, side: THREE.DoubleSide, transparent: true, opacity: 1.0, depthWrite: false, }) const lightMesh: THREE.Mesh = new THREE.Mesh(lightGeo, lightMaterial) // 设置光柱的旋转和位置,让他竖立在涟漪圈上边 lightMesh.rotateX(Math.PI / 2) lightMesh.position.z = 0.25
pointGroup.add(waveMesh, lightMesh)
pointGroup.position.set(localton.x, localton.y, localton.z)
// 调用normalize方法归一化向量,好处是保留了原向量信息而长度为1,在计算中更方便 const coordVec3 = new THREE.Vector3( localton.x, localton.y, localton.z ).normalize(); const meshNormal = new THREE.Vector3( 0, 0, 1 ); // setFromUnitVectors方法根据这两个向量计算并设置旋转四元数,使pointGroup中的物体朝向目标点 pointGroup.quaternion.setFromUnitVectors( meshNormal, coordVec3 );
return pointGroup }
const drawPointOnEarth = (): void => { // 标点集合 const localtionGroup: THREE.Group = new THREE.Group(); // 飞线集合 const flyLineGroup: THREE.Group = new THREE.Group() for(let i = 0; i < lnglatData.length; i++) { lnglatData[i].lnglat.forEach((lnglat: number[]) => { const xyz = lglnToxyz(lnglat[0], lnglat[1], 5.1) localtionGroup.add(createEarthPoint(xyz, lnglatData[i].color)) })
const from = lglnToxyz(lnglatData[i].lnglat[0][0], lnglatData[i].lnglat[0][1], 5.1) const to = lglnToxyz(lnglatData[i].lnglat[1][0], lnglatData[i].lnglat[1][1], 5.1) flyLineGroup.add(createFlyLine(from, to)) } earthGroup.add(localtionGroup, flyLineGroup) }
const createFlyLine = (v0: THREE.Vector3, v3: THREE.Vector3): THREE.Line => { // v0.angleTo(v3)计算v0和v3之间的夹角,单位为弧度,(弧度 * 180) / Math.PI 将弧度转化为角度,单位为度 const angle: number = (v0.angleTo(v3) * 180) / Math.PI; // 计算控制点的水平距离,将夹角 * 常数(这个常数是个经验值,根据实际情况调整,它的作用是控制曲线的弯曲程度) const horizontal: number = angle * 0.04; // 计算了控制点的垂直距离,将夹角的平方 * 常数(这个常数是个经验值,根据实际情况调整,它的作用是控制曲线的高度) const vertical: number = angle * angle * 0.1; // 法线向量,球心 const p0: THREE.Vector3 = new THREE.Vector3(0, 0, 0); // 计算起始点到终止点两点间的中间点,即两向量的平均值 const centerPoint: THREE.Vector3 = v0.clone().add(v3.clone()).divideScalar(2); // 从圆心到中间点形成无穷远的射线 const rayLine: THREE.Ray = new THREE.Ray(p0, centerPoint); // rayLine.at需要传两个参数,所以这里创建一个临时变量 const temp = new THREE.Vector3(); // rayLine.at获取Ray对象起点与终点之间的向量并储存在temp中 // 从给定点p0开始,沿着给定方向(由Ray对象表示)上的一条射线上,到该射线与垂线所在平面的交点的计算 let vtop = rayLine.at( vertical / rayLine.at( 1, temp ).distanceTo( p0 ), temp );
// lerp方法v0到vtop和horizontal / v0.clone().distanceTo(vtop)之间进行插值 // v0.clone().distanceTo(vtop) 表示向量 v0 到向量 vtop 之间的距离,也就是线段 v0 和 vtop 的长度 // 将 horizontal 除以线段的长度,实际上是在计算一个在 v0 到 vtop 这条线段上的相对位置,这个相对位置是以 horizontal 所表示的距离来度量的 // 具体来说,horizontal 可以看作是线段长度的一个比例因子。当 horizontal 的值为 0 时 // 所得到的向量就是 v0,当 horizontal 的值为线段长度时,所得到的向量就是 vtop。当 horizontal 的值为线段长度的一半时 // 所得到的向量就是线段的中点。因此,horizontal / v0.clone().distanceTo(vtop) 表示在 v0 到 vtop 这条线段上的相对位置 // 这个位置是由 horizontal 和线段长度共同决定的 let v1 = v0.clone().lerp(vtop, horizontal / v0.clone().distanceTo(vtop)); let v2 = v3.clone().lerp(vtop, horizontal / v3.clone().distanceTo(vtop));
const curve: THREE.CubicBezierCurve3 = new THREE.CubicBezierCurve3( v0, v1, v2, v3 ); const points: THREE.Vector3[] = curve.getSpacedPoints( 100 ); const lineGeo: THREE.BufferGeometry = new THREE.BufferGeometry().setFromPoints(points) const lineMaterial = new THREE.LineBasicMaterial( { color: new THREE.Color('rgb(255, 255, 255)'), linewidth: 1, transparent: true, opacity: 0 }); const line: THREE.Line = new THREE.Line(lineGeo, lineMaterial) scene.add(line)
// 从0开始,每次取5个点的数量 const index = 0, num = 5 // 从曲线上取一段 let flyLinePoints = points.splice(index, index + num) let flyLineGeo = new THREE.BufferGeometry().setFromPoints(flyLinePoints); (flyLineGeo as any).points = points; (flyLineGeo as any).num = num; (flyLineGeo as any)._index = index; var flyLineMaterial = new THREE.LineBasicMaterial({ linewidth: 1, color: new THREE.Color('rgb(254, 215, 26)') }); var flyLine = new THREE.Line(flyLineGeo, flyLineMaterial); flyLineArr.push(flyLine);
return flyLine; }
const render = (): void => { controls.update(); renderer.render(scene, camera); if (stats) { stats.update(); }
if(composer) { composer.render(); }
if(stars){ stars.rotation.y += 0.0009; stars.rotation.z -= 0.0003; }
// 卫星公转 if(satellite) { if (progress <= 1 - velocity) { const satelliteMovePosition = curve.getPointAt(progress + velocity) progress += velocity satellite.position.copy(satelliteMovePosition) } else { progress = 0 } }
// 飞线动画 if(flyLineArr.length) { flyLineArr.forEach(flyLine => { let flyLineGeo = flyLine.geometry let points = (flyLineGeo as any).points let p = JSON.parse(JSON.stringify(points)) let num = (flyLineGeo as any).num
let flyLinePoints = p.splice((flyLineGeo as any)._index, (flyLineGeo as any)._index + num) flyLineGeo.setFromPoints(flyLinePoints)
if((flyLineGeo as any)._index < points.length) { (flyLineGeo as any)._index += 1 } else { (flyLineGeo as any)._index = 0 } }) }
// 涟漪动画 if(wareArr.length) { wareArr.forEach((ware: any) => { ware._s += 0.01; ware.scale.set( ware.size * ware._s, ware.size * ware._s, ware.size * ware._s ); if (ware._s <= 1.5) { //mesh._s=1,透明度=0 mesh._s=1.5,透明度=1 ware.material.opacity = ( ware._s - 1 ) * 2; } else if (ware._s > 1.5 && ware._s <= 2) { //mesh._s=1.5,透明度=1 mesh._s=2,透明度=0 ware.material.opacity = 1 - ( ware._s - 1.5 ) * 2; } else { ware._s = 1.0; } }) }
requestAnimationFrame(render); };
window.addEventListener("resize", () => { // 更新摄像机 camera.aspect = canvas.value.clientWidth / canvas.value.clientHeight; // 更新摄像机投影矩阵 camera.updateProjectionMatrix(); // 更新渲染器 renderer.setSize(canvas.value.clientWidth, canvas.value.clientHeight); // 设置渲染器的像素比 renderer.setPixelRatio(window.devicePixelRatio); // 更新效果合成器 composer.setSize(canvas.value.clientWidth, canvas.value.clientHeight); }); </script>
<style lang="less" scoped> .loading { position: fixed; top: 0; left: 0; bottom: 0; right: 0; background: #333333; z-index: 100000;
.content { position: absolute; left: 50%; top: 50%; transform: translate(-50%, -50%); width: 30%;
.box { width: 100%; height: 30px; background: #1e1d1d; border-radius: 30px; box-shadow: 0 0 4px 4px #ffffff3c; overflow: hidden;
.process { width: 0%; height: 100%; background-image: linear-gradient(45deg, #0a9798 0%, #0b75cf 100%); transition: all 1s; } }
p { padding-top: 10px; } } }
.v-enter-active, .v-leave-active { transition: opacity 0.5s ease; }
.v-enter-from, .v-leave-to { opacity: 0; } </style>
|